3.8 \(\int \frac{\cos ^2(e+f x) \sqrt{a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{7/2}} \, dx\)

Optimal. Leaf size=48 \[ \frac{\cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{4 a c f (c-c \sin (e+f x))^{5/2}} \]

[Out]

(Cos[e + f*x]*(a + a*Sin[e + f*x])^(3/2))/(4*a*c*f*(c - c*Sin[e + f*x])^(5/2))

________________________________________________________________________________________

Rubi [A]  time = 0.318728, antiderivative size = 48, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 38, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.053, Rules used = {2841, 2742} \[ \frac{\cos (e+f x) (a \sin (e+f x)+a)^{3/2}}{4 a c f (c-c \sin (e+f x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[e + f*x]^2*Sqrt[a + a*Sin[e + f*x]])/(c - c*Sin[e + f*x])^(7/2),x]

[Out]

(Cos[e + f*x]*(a + a*Sin[e + f*x])^(3/2))/(4*a*c*f*(c - c*Sin[e + f*x])^(5/2))

Rule 2841

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)])^(n_.), x_Symbol] :> Dist[1/(a^(p/2)*c^(p/2)), Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(
n + p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[p
/2]

Rule 2742

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n)/(a*f*(2*m + 1)), x] /; FreeQ[{a, b, c, d, e, f
, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] && NeQ[m, -2^(-1)]

Rubi steps

\begin{align*} \int \frac{\cos ^2(e+f x) \sqrt{a+a \sin (e+f x)}}{(c-c \sin (e+f x))^{7/2}} \, dx &=\frac{\int \frac{(a+a \sin (e+f x))^{3/2}}{(c-c \sin (e+f x))^{5/2}} \, dx}{a c}\\ &=\frac{\cos (e+f x) (a+a \sin (e+f x))^{3/2}}{4 a c f (c-c \sin (e+f x))^{5/2}}\\ \end{align*}

Mathematica [A]  time = 0.387789, size = 90, normalized size = 1.88 \[ \frac{\sin (e+f x) \sqrt{a (\sin (e+f x)+1)} \sqrt{c-c \sin (e+f x)}}{c^4 f \left (\cos \left (\frac{1}{2} (e+f x)\right )-\sin \left (\frac{1}{2} (e+f x)\right )\right )^5 \left (\sin \left (\frac{1}{2} (e+f x)\right )+\cos \left (\frac{1}{2} (e+f x)\right )\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[e + f*x]^2*Sqrt[a + a*Sin[e + f*x]])/(c - c*Sin[e + f*x])^(7/2),x]

[Out]

(Sin[e + f*x]*Sqrt[a*(1 + Sin[e + f*x])]*Sqrt[c - c*Sin[e + f*x]])/(c^4*f*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2]
)^5*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2]))

________________________________________________________________________________________

Maple [B]  time = 0.224, size = 96, normalized size = 2. \begin{align*} -{\frac{ \left ( \sin \left ( fx+e \right ) \cos \left ( fx+e \right ) - \left ( \cos \left ( fx+e \right ) \right ) ^{2}-2\,\sin \left ( fx+e \right ) -\cos \left ( fx+e \right ) +2 \right ) \sin \left ( fx+e \right ) }{f \left ( 1-\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) \right ) }\sqrt{a \left ( 1+\sin \left ( fx+e \right ) \right ) } \left ( -c \left ( -1+\sin \left ( fx+e \right ) \right ) \right ) ^{-{\frac{7}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)^2*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(7/2),x)

[Out]

-1/f*(sin(f*x+e)*cos(f*x+e)-cos(f*x+e)^2-2*sin(f*x+e)-cos(f*x+e)+2)*sin(f*x+e)*(a*(1+sin(f*x+e)))^(1/2)/(1-cos
(f*x+e)+sin(f*x+e))/(-c*(-1+sin(f*x+e)))^(7/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a \sin \left (f x + e\right ) + a} \cos \left (f x + e\right )^{2}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(7/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a*sin(f*x + e) + a)*cos(f*x + e)^2/(-c*sin(f*x + e) + c)^(7/2), x)

________________________________________________________________________________________

Fricas [A]  time = 1.70599, size = 200, normalized size = 4.17 \begin{align*} -\frac{\sqrt{a \sin \left (f x + e\right ) + a} \sqrt{-c \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}{c^{4} f \cos \left (f x + e\right )^{3} + 2 \, c^{4} f \cos \left (f x + e\right ) \sin \left (f x + e\right ) - 2 \, c^{4} f \cos \left (f x + e\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(7/2),x, algorithm="fricas")

[Out]

-sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)*sin(f*x + e)/(c^4*f*cos(f*x + e)^3 + 2*c^4*f*cos(f*x + e)*
sin(f*x + e) - 2*c^4*f*cos(f*x + e))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)**2*(a+a*sin(f*x+e))**(1/2)/(c-c*sin(f*x+e))**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a \sin \left (f x + e\right ) + a} \cos \left (f x + e\right )^{2}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(7/2),x, algorithm="giac")

[Out]

integrate(sqrt(a*sin(f*x + e) + a)*cos(f*x + e)^2/(-c*sin(f*x + e) + c)^(7/2), x)